

MolVS: Molecule Validation and Standardization

MolVS is a molecule validation and standardization tool, written in Python using the RDKit chemistry framework [http://www.rdkit.org].

Building a collection of chemical structures from different sources can be difficult due to differing representations,
drawing conventions and mistakes. MolVS can standardize chemical structures to improve data quality, help with
de-duplication and identify relationships between molecules.

There are sensible defaults that make it easy to get started:

>>> from molvs import standardize_smiles
>>> standardize_smiles('[Na]OC(=O)c1ccc(C[S+2]([O-])([O-]))cc1')
'[Na+].O=C([O-])c1ccc(CS(=O)=O)cc1'

Each standardization module is also available separately, allowing the development of custom standardization processes.

Features

	Normalization of functional groups to a consistent format.

	Recombination of separated charges.

	Breaking of bonds to metal atoms.

	Competitive reionization to ensure strongest acids ionize first in partially ionize molecules.

	Tautomer enumeration and canonicalization.

	Neutralization of charges.

	Standardization or removal of stereochemistry information.

	Filtering of salt and solvent fragments.

	Generation of fragment, isotope, charge, tautomer or stereochemistry insensitive parent structures.

	Validations to identify molecules with unusual and potentially troublesome characteristics.

User guide

A step-by-step guide to getting started with MolVS.

	Introduction

	Installation

	Getting started

	Validation

	Standardization

	Tautomers

	Fragments

	Charges

	Command Line Tool

	Contributing

API documentation

Comprehensive API documentation with information on every function, class and method. This is automatically generated
from the MolVS source code and comments.

	API documentation
	molvs.standardize

	molvs.normalize

	molvs.metal

	molvs.tautomer

	molvs.fragment

	molvs.charge

	molvs.validate

	molvs.validations

	molvs.cli

	molvs.errors

Useful links

	MolVS on GitHub [https://github.com/mcs07/MolVS]

	MolVS on PyPI [https://pypi.python.org/pypi/MolVS]

	Issue tracker [https://github.com/mcs07/MolVS/issues]

	Release history [https://github.com/mcs07/MolVS/releases]

	MolVS Travis CI [https://travis-ci.org/mcs07/MolVS]

Introduction

Building a collection of chemical structures from various different sources is difficult. There are differing
file formats, molecular representations, drawing conventions, and things that are just plain wrong.

A lot of this arises due to our chemical models being an imperfect description of reality, but even within the idealized
models there is often no single correct answer to whether two differently represented molecules are actually “the same”.
Whether tautomers or isomers of the same molecule should be considered equivalent or distinct entities can depend
entirely on the specific application.

MolVS tries to address this problem through customizable validation and standardization processes, combined with the
concept of “parent” molecule relationships to allow multiple simultaneous degrees of standardization.

This guide provides a quick tour through MolVS concepts and functionality.

MolVS license

MolVS is released under the MIT License. This is a short, permissive software license that allows commercial use,
modifications, distribution, sublicensing and private use. Basically, you can do whatever you want with MolVS as long as
you include the original copyright and license in any copies or derivative projects.

See the LICENSE file [https://github.com/mcs07/MolVS/blob/master/LICENSE] for the full text of the license.

Installation

MolVS supports Python versions 2.7 and 3.5+.

There are a variety of ways to download and install MolVS.

Option 2: Use conda (recommended)

The easiest and recommended way to install is using conda. Anaconda Python [https://www.continuum.io/anaconda-overview] is a self-contained Python environment
that is particularly useful for scientific applications.

If you don’t already have it, start by installing Miniconda [http://conda.pydata.org/miniconda.html], which includes a complete Python distribution and the
conda package manager. Choose the Python 3 version, unless you have a particular reason why you must use Python 2.

To install MolVS, at the command line, run:

conda config --add channels conda-forge
conda install molvs

Option 2: Use pip

An alternative method is to install using pip:

pip install molvs

This will download the latest version of MolVS, and place it in your site-packages folder so it is automatically
available to all your python scripts.

Note

MolVS requires RDKit, which cannot be installed using pip. On the Mac, you can use Homebrew:

brew tap mcs07/cheminformatics
brew install rdkit

The official RDKit documentation has installation instructions for a variety of platforms [http://www.rdkit.org/docs/Install.html].

Option 2: Download the latest release

Alternatively, download the latest release [https://github.com/mcs07/MolVS/releases/] manually and install yourself:

tar -xzvf MolVS-0.1.1.tar.gz
cd MolVS-0.1.1
python setup.py install

The setup.py command will install MolVS in your site-packages folder so it is automatically available to all your
python scripts.

Option 3: Clone the repository

The latest development version of MolVS is always available on GitHub [https://github.com/mcs07/MolVS]. This version is not guaranteed to be
stable, but may include new features that have not yet been released. Simply clone the repository and install as usual:

git clone https://github.com/mcs07/MolVS.git
cd MolVS
python setup.py install

Getting started

This page gives a introduction on how to get started with MolVS. This assumes you already have MolVS
installed.

TODO…

Validation

The MolVS Validator provides a way to identify and log unusual and potentially troublesome
characteristics of a molecule.

The validation process makes no actual changes to a molecule – that is left to the standardization process, which fixes
many of the issues identified through validation. There is no real requirement to validate a molecule before or after
standardizing it - the process simply provides additional information about potential problems.

Validating a molecule

The validate_smiles() function is a convenient way to quickly validate a single SMILES
string:

>>> from molvs import validate_smiles
>>> validate_smiles('O=C([O-])c1ccccc1')
['INFO: [NeutralValidation] Not an overall neutral system (-1)']

It returns a list of log messages as strings.

The Validator class provides more flexibility when working with multiple molecules or when a
custom Validation list is required:

>>> fmt = '%(asctime)s - %(levelname)s - %(validation)s - %(message)s'
>>> validator = Validator(log_format=fmt)
>>> mol = Chem.MolFromSmiles('[2H]C(Cl)(Cl)Cl')
>>> validator.validate(mol)
['2014-08-05 16:04:23,682 - INFO - IsotopeValidation - Molecule contains isotope 2H']

Available validations

The API documentation contains a full list of the individual validations that are available.

Standardization

This page gives details on the standardization process.

Standardizing a molecule

The standardize_smiles function provides a quick and easy way to get the standardized version of a given SMILES
string:

>>> from molvs import standardize_smiles
>>> standardize_smiles('C[n+]1c([N-](C))cccc1')
'CN=c1ccccn1C'

While this is convenient for one-off cases, it’s inefficient when dealing with multiple molecules and doesn’t allow any
customization of the standardization process.

The Standardizer class provides flexibility to specify custom standardization stages and efficiently standardize
multiple molecules:

>>> from rdkit import Chem
>>> mol = Chem.MolFromSmiles('[Na]OC(=O)c1ccc(C[S+2]([O-])([O-]))cc1')

[image: ../_images/mol1.png]
>>> from molvs import Standardizer
>>> s = Standardizer()
>>> smol = s.standardize(mol)

[image: ../_images/mol1s.png]

The standardization process

TODO: Explain this properly…

RDKit Sanitize

	Nitro N=O: CN(=O)=O >> C[N+](=O)[O-] and C1=CC=CN(=O)=C1 >> C1=CC=C[N+]([O-])=C1

	Nitro N#O: C-N=N#N >> C-N=[N+]=[N-]

	Perchlorate: Cl(=O)(=O)(=O)[O-] >> [Cl+3]([O-])([O-])([O-])[O-]

	Calculate explicit and implicit valence of all atoms. Fails when atoms have illegal valence.

	Calculate symmetrized SSSR. Slowest step, fails in rare cases.

	Kekulize. Fails if a Kekule form cannot be found or non-ring bonds are marked as aromatic.

	Assign radicals if hydrogens set and bonds+hydrogens+charge < valence.

	Set aromaticity, if none set in input. Go round rings, Huckel rule to set atoms+bonds as aromatic.

	Set conjugated property on bonds where applicable.

	Set hybridisation property on atoms.

	Remove chirality markers from sp and sp2 hybridised centers.

RDKit RemoveHs

	RDKit implementation detail - this is the preferred way to store the molecule.

	Remove explicit H count from atoms, instead infer it on the fly from valence model.

Disconnect metals

	Break covalent bonds between metals and organic atoms under certain conditions.

	First, disconnect N, O, F from any metal. Then disconnect other non-metals from transition metals (with exceptions).

	For every bond broken, adjust the charges of the begin and end atoms accordingly.

	In future, we might attempt to replace with zero-order bonds.

Apply normalization rules

	A series of transformations to correct common drawing errors and standardize functional groups. Includes:

	Uncharge-separate sulfones

	Charge-separate nitro groups

	Charge-separate pyridine oxide

	Charge-separate azide

	Charge-separate diazo and azo groups

	Charge-separate sulfoxides

	Hydrazine-diazonium system

Reionize acids

If molecule with multiple acid groups is partially ionized, ensure strongest acids ionize
first.

The algorithm works as follows:

	Use SMARTS to find the strongest protonated acid and the weakest ionized acid.

	If the ionized acid is weaker than the protonated acid, swap proton and repeat.

Recalculate stereochemistry

	Use built-in RDKit functionality to force a clean recalculation of stereochemistry

Tautomers

This page gives details on tautomer enumeration and canonicalization.

Background

Tautomers are sets of molecules that readily interconvert with each other through the movement of a hydrogen atom.
Tautomers have the same molecular formula and net charge, but they differ in terms of the positions of hydrogens and
the associated changes in adjacent double and single bonds.

Because they rapidly interconvert, for many applications tautomers are considered to be the same chemical compound.
And even in situations where it is important to treat tautomers as distinct compounds, it is still useful to be
aware of the tautomerism relationships between molecules in a collection.

Varying tautomeric forms of the same molecule can have significantly different fingerprints and descriptors, which can
negatively impact models for things like property prediction if they are used inconsistently.

There are two main tautomerism tasks that MolVS carries out:

	Tautomer enumeration: Finding the set of all the different possible tautomeric forms of a molecule.

	Tautomer canonicalization: Consistently picking one of the tautomers to be the canonical tautomer for the set.

Tautomer enumeration

	All possible tautomers are generated using a series of transform rules.

	Remove stereochemistry from double bonds that are single in at least 1 tautomer.

Tautomer canonicalization

	Enumerate all possible tautomers using transform rules.

	Use scoring system to determine canonical tautomer.

	Canonical tautomer should be “reasonable” from a chemist’s point of view, but isn’t guaranteed to be the most energetically favourable.

Fragments

This page gives details on dealing with fragments.

The term fragment refers to covalently bonded units. A molecule can contain multiple fragments.

Getting the largest fragment

	LargestFragmentChooser

Filtering out fragments

	FragmentRemover

Charges

This page gives details on dealing with charges in molecules.

Acid reionization

	Ensure the strongest acid groups ionize first in partially ionized molecules.

Neutralization

	Attempt to neutralize charges by adding and/or removing hydrogens where possible.

	Not always possible to produce a neutral molecule.

Command Line Tool

MolVS comes with a simple command line tool that allows standardization and validation by typing molvs at the
command line.

Standardization

See standardization help by typing molvs standardize -h:

usage: molvs standardize [infile] [-i {smi,mol,sdf}] [-O <outfile>]
 [-o {smi,mol,sdf}] [-: <smiles>]

positional arguments:
 infile input filename

optional arguments:
 -i {smi,mol,sdf}, --intype {smi,mol,sdf}
 input filetype
 -: <smiles>, --smiles <smiles>
 input SMILES instead of file
 -O <outfile>, --outfile <outfile>
 output filename
 -o {smi,mol,sdf}, --outtype {smi,mol,sdf}
 output filetype

Validation

See validation help by typing molvs validate -h:

usage: molvs validate [infile] [-i {smi,mol,sdf}] [-O <outfile>]
 [-: <smiles>]

positional arguments:
 infile input filename

optional arguments:
 -i {smi,mol,sdf}, --intype {smi,mol,sdf}
 input filetype
 -: <smiles>, --smiles <smiles>
 input SMILES instead of file
 -O <outfile>, --outfile <outfile>
 output filename

Examples

SMILES standardization:

$ molvs standardize -:"C[n+]1c([N-](C))cccc1"
CN=c1ccccn1C

Specifying an output format:

$ molvs standardize -:"[N](=O)(=O)O" -o mol

 RDKit

 4 3 0 0 0 0 0 0 0 0999 V2000
 0.0000 0.0000 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0
 0.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0
 0.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0
 0.0000 0.0000 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0
 1 2 1 0
 1 3 2 0
 1 4 1 0
M CHG 2 1 1 2 -1
M END

Using stdin:

$ echo "C[n+]1c([N-](C))cccc1" | molvs standardize
CN=c1ccccn1C

Specifying an input file:

$ molvs standardize example.mol
CN=c1ccccn1C

Specifying an output file:

$ molvs standardize example.mol -O output.smi
$ molvs standardize example.mol -O output.mol
$ molvs standardize example.mol -O output -o mol

Logging validations to stdout:

$ molvs validate -:"O=C([O-])c1ccccc1"
INFO: [NeutralValidation] Not an overall neutral system (-1)

Logging validations to a file:

$ molvs validate -:"O=C([O-])c1ccccc1" -O logs.txt

Contributing

Contributions of any kind are greatly appreciated!

Feedback

The Issue Tracker [https://github.com/mcs07/MolVS/issues] is the best place to post any feature ideas, requests and bug reports.

The following are especially welcome:

	General feedback on whether any standardization stages should work differently.

	Specific molecules that don’t validate or standardize as expected.

	Ideas for new validation and standardization stages.

Contributing

If you are able to contribute changes yourself, just fork the source code [https://github.com/mcs07/MolVS] on GitHub, make changes and file a pull
request. All contributions are welcome, no matter how big or small.

The following are especially welcome:

	New validation or standardization stages.

	Alternative tautomer transforms and scores.

	Lists of salts and solvents to strip out.

	New or improved documentation of existing features.

Quick guide to contributing

	Fork the MolVS repository on GitHub [https://github.com/mcs07/MolVS/fork], then clone your fork to your local machine:

git clone https://github.com/<username>/MolVS.git
cd molvs

	Install the development requirements into a conda environment [https://conda.io/docs/]:

conda env create -n molvs -f environment.yml
source activate molvs

	Create a new branch for your changes:

git checkout -b <name-for-changes>

	Make your changes or additions. Ideally add some tests and ensure they pass by running:

pytest

	Commit your changes and push to your fork on GitHub:

git add .
git commit -m "<description-of-changes>"
git push origin <name-for-changes>

	Submit a pull request [https://github.com/mcs07/MolVS/compare/].

Tips

	Follow the PEP8 [https://www.python.org/dev/peps/pep-0008] style guide.

	Include docstrings as described in PEP257 [https://www.python.org/dev/peps/pep-0257].

	Try and include tests that cover your changes.

	Try to write good commit messages [http://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html].

	Consider squashing your commits [http://gitready.com/advanced/2009/02/10/squashing-commits-with-rebase.html] with rebase.

	Read the GitHub help page on Using pull requests [https://help.github.com/articles/using-pull-requests].

API documentation

This part of the documentation is automatically generated from the MolVS source code and comments.

The MolVS package is made up of the following modules:

	molvs.standardize

	molvs.normalize

	molvs.metal

	molvs.tautomer

	molvs.fragment

	molvs.charge

	molvs.validate

	molvs.validations

	molvs.cli

	molvs.errors

molvs.standardize

This module contains the main Standardizer class that can be used to perform all
standardization tasks, as well as convenience functions like standardize_smiles() for common
standardization tasks.

	
class molvs.standardize.Standardizer(normalizations=NORMALIZATIONS, acid_base_pairs=ACID_BASE_PAIRS, tautomer_transforms=TAUTOMER_TRANSFORMS, tautomer_scores=TAUTOMER_SCORES, max_restarts=MAX_RESTARTS, max_tautomers=MAX_TAUTOMERS, prefer_organic=PREFER_ORGANIC)

	The main class for performing standardization of molecules and deriving parent molecules.

The primary usage is via the standardize() method:

s = Standardizer()
mol1 = Chem.MolFromSmiles('C1=CC=CC=C1')
mol2 = s.standardize(mol1)

There are separate methods to derive fragment, charge, tautomer, isotope and stereo parent molecules.

Initialize a Standardizer with optional custom parameters.

	Parameters

	
	normalizations – A list of Normalizations to apply (default: NORMALIZATIONS).

	acid_base_pairs – A list of AcidBasePairs for competitive reionization (default:
ACID_BASE_PAIRS).

	charge_corrections – A list of ChargeCorrections to apply (default:
CHARGE_CORRECTIONS).

	tautomer_transforms – A list of TautomerTransforms to apply (default:
TAUTOMER_TRANSFORMS).

	tautomer_scores – A list of TautomerScores used to determine canonical tautomer (default:
TAUTOMER_SCORES).

	max_restarts – The maximum number of times to attempt to apply the series of normalizations (default 200).

	max_tautomers – The maximum number of tautomers to enumerate (default 1000).

	prefer_organic – Whether to prioritize organic fragments when choosing fragment parent (default False).

	
__call__(mol)

	Calling a Standardizer instance like a function is the same as calling its
standardize() method.

	
standardize(mol)

	Return a standardized version the given molecule.

The standardization process consists of the following stages: RDKit
RemoveHs [http://www.rdkit.org/Python_Docs/rdkit.Chem.rdmolops-module.html#RemoveHs], RDKit
SanitizeMol [http://www.rdkit.org/Python_Docs/rdkit.Chem.rdmolops-module.html#SanitizeMol], MetalDisconnector,
Normalizer, Reionizer, RDKit
AssignStereochemistry [http://www.rdkit.org/Python_Docs/rdkit.Chem.rdmolops-module.html#AssignStereochemistry].

	Parameters

	mol (Mol [http://www.rdkit.org/Python_Docs/rdkit.Chem.rdchem.Mol-class.html]) – The molecule to standardize.

	Returns

	The standardized molecule.

	Return type

	Mol [http://www.rdkit.org/Python_Docs/rdkit.Chem.rdchem.Mol-class.html]

	
tautomer_parent(mol, skip_standardize=False)

	Return the tautomer parent of a given molecule.

	Parameters

	
	mol (Mol [http://www.rdkit.org/Python_Docs/rdkit.Chem.rdchem.Mol-class.html]) – The input molecule.

	skip_standardize (bool [https://docs.python.org/3/library/functions.html#bool]) – Set to True if mol has already been standardized.

	Returns

	The tautomer parent molecule.

	Return type

	Mol [http://www.rdkit.org/Python_Docs/rdkit.Chem.rdchem.Mol-class.html]

	
fragment_parent(mol, skip_standardize=False)

	Return the fragment parent of a given molecule.

The fragment parent is the largest organic covalent unit in the molecule.

	Parameters

	
	mol (Mol [http://www.rdkit.org/Python_Docs/rdkit.Chem.rdchem.Mol-class.html]) – The input molecule.

	skip_standardize (bool [https://docs.python.org/3/library/functions.html#bool]) – Set to True if mol has already been standardized.

	Returns

	The fragment parent molecule.

	Return type

	Mol [http://www.rdkit.org/Python_Docs/rdkit.Chem.rdchem.Mol-class.html]

	
stereo_parent(mol, skip_standardize=False)

	Return the stereo parent of a given molecule.

The stereo parent has all stereochemistry information removed from tetrahedral centers and double bonds.

	Parameters

	
	mol (Mol [http://www.rdkit.org/Python_Docs/rdkit.Chem.rdchem.Mol-class.html]) – The input molecule.

	skip_standardize (bool [https://docs.python.org/3/library/functions.html#bool]) – Set to True if mol has already been standardized.

	Returns

	The stereo parent molecule.

	Return type

	Mol [http://www.rdkit.org/Python_Docs/rdkit.Chem.rdchem.Mol-class.html]

	
isotope_parent(mol, skip_standardize=False)

	Return the isotope parent of a given molecule.

The isotope parent has all atoms replaced with the most abundant isotope for that element.

	Parameters

	
	mol (Mol [http://www.rdkit.org/Python_Docs/rdkit.Chem.rdchem.Mol-class.html]) – The input molecule.

	skip_standardize (bool [https://docs.python.org/3/library/functions.html#bool]) – Set to True if mol has already been standardized.

	Returns

	The isotope parent molecule.

	Return type

	Mol [http://www.rdkit.org/Python_Docs/rdkit.Chem.rdchem.Mol-class.html]

	
charge_parent(mol, skip_standardize=False)

	Return the charge parent of a given molecule.

The charge parent is the uncharged version of the fragment parent.

	Parameters

	
	mol (Mol [http://www.rdkit.org/Python_Docs/rdkit.Chem.rdchem.Mol-class.html]) – The input molecule.

	skip_standardize (bool [https://docs.python.org/3/library/functions.html#bool]) – Set to True if mol has already been standardized.

	Returns

	The charge parent molecule.

	Return type

	Mol [http://www.rdkit.org/Python_Docs/rdkit.Chem.rdchem.Mol-class.html]

	
super_parent(mol, skip_standardize=False)

	Return the super parent of a given molecule.

THe super parent is fragment, charge, isotope, stereochemistry and tautomer insensitive. From the input
molecule, the largest fragment is taken. This is uncharged and then isotope and stereochemistry information is
discarded. Finally, the canonical tautomer is determined and returned.

	Parameters

	
	mol (Mol [http://www.rdkit.org/Python_Docs/rdkit.Chem.rdchem.Mol-class.html]) – The input molecule.

	skip_standardize (bool [https://docs.python.org/3/library/functions.html#bool]) – Set to True if mol has already been standardized.

	Returns

	The super parent molecule.

	Return type

	Mol [http://www.rdkit.org/Python_Docs/rdkit.Chem.rdchem.Mol-class.html]

	
disconnect_metals

	
	Returns

	A callable MetalDisconnector instance.

	
normalize

	
	Returns

	A callable Normalizer instance.

	
reionize

	
	Returns

	A callable Reionizer instance.

	
uncharge

	
	Returns

	A callable Uncharger instance.

	
remove_fragments

	
	Returns

	A callable FragmentRemover instance.

	
largest_fragment

	
	Returns

	A callable LargestFragmentChooser instance.

	
enumerate_tautomers

	
	Returns

	A callable TautomerEnumerator instance.

	
canonicalize_tautomer

	
	Returns

	A callable TautomerCanonicalizer instance.

	
molvs.standardize.standardize_smiles(smiles)

	Return a standardized canonical SMILES string given a SMILES string.

Note: This is a convenience function for quickly standardizing a single SMILES string. It is more efficient to use
the Standardizer class directly when working with many molecules or when custom options
are needed.

	Parameters

	smiles (string) – The SMILES for the molecule.

	Returns

	The SMILES for the standardized molecule.

	Return type

	string.

	
molvs.standardize.enumerate_tautomers_smiles(smiles)

	Return a set of tautomers as SMILES strings, given a SMILES string.

	Parameters

	smiles – A SMILES string.

	Returns

	A set containing SMILES strings for every possible tautomer.

	Return type

	set of strings.

	
molvs.standardize.canonicalize_tautomer_smiles(smiles)

	Return a standardized canonical tautomer SMILES string given a SMILES string.

Note: This is a convenience function for quickly standardizing and finding the canonical tautomer for a single
SMILES string. It is more efficient to use the Standardizer class directly when working
with many molecules or when custom options are needed.

	Parameters

	smiles (string) – The SMILES for the molecule.

	Returns

	The SMILES for the standardize canonical tautomer.

	Return type

	string.

molvs.normalize

This module contains tools for normalizing molecules using reaction SMARTS patterns.

	
molvs.normalize.NORMALIZATIONS

	The default list of Normalization transforms.

	
molvs.normalize.MAX_RESTARTS = 200

	The default value for the maximum number of times to attempt to apply the series of normalizations.

	
class molvs.normalize.Normalization(name, transform)

	A normalization transform defined by reaction SMARTS.

	Parameters

	
	name (string) – A name for this Normalization

	transform (string) – Reaction SMARTS to define the transformation.

	
class molvs.normalize.Normalizer(normalizations=NORMALIZATIONS, max_restarts=MAX_RESTARTS)

	A class for applying Normalization transforms.

This class is typically used to apply a series of Normalization transforms to correct functional groups and
recombine charges. Each transform is repeatedly applied until no further changes occur.

Initialize a Normalizer with an optional custom list of Normalization transforms.

	Parameters

	
	normalizations – A list of Normalization transforms to apply.

	max_restarts (int [https://docs.python.org/3/library/functions.html#int]) – The maximum number of times to attempt to apply the series of normalizations (default
200).

	
__call__(mol)

	Calling a Normalizer instance like a function is the same as calling its normalize(mol) method.

	
normalize(mol)

	Apply a series of Normalization transforms to correct functional groups and recombine charges.

A series of transforms are applied to the molecule. For each Normalization, the transform is applied repeatedly
until no further changes occur. If any changes occurred, we go back and start from the first Normalization
again, in case the changes mean an earlier transform is now applicable. The molecule is returned once the entire
series of Normalizations cause no further changes or if max_restarts (default 200) is reached.

	Parameters

	mol (Mol [http://www.rdkit.org/Python_Docs/rdkit.Chem.rdchem.Mol-class.html]) – The molecule to normalize.

	Returns

	The normalized fragment.

	Return type

	Mol [http://www.rdkit.org/Python_Docs/rdkit.Chem.rdchem.Mol-class.html]

molvs.metal

This module contains tools for disconnecting metal atoms that are defined as covalently bonded to non-metals.

	
class molvs.metal.MetalDisconnector

	Class for breaking covalent bonds between metals and organic atoms under certain conditions.

	
__call__(mol)

	Calling a MetalDisconnector instance like a function is the same as calling its disconnect(mol) method.

	
disconnect(mol)

	Break covalent bonds between metals and organic atoms under certain conditions.

The algorithm works as follows:

	Disconnect N, O, F from any metal.

	Disconnect other non-metals from transition metals + Al (but not Hg, Ga, Ge, In, Sn, As, Tl, Pb, Bi, Po).

	For every bond broken, adjust the charges of the begin and end atoms accordingly.

	Parameters

	mol (Mol [http://www.rdkit.org/Python_Docs/rdkit.Chem.rdchem.Mol-class.html]) – The input molecule.

	Returns

	The molecule with metals disconnected.

	Return type

	Mol [http://www.rdkit.org/Python_Docs/rdkit.Chem.rdchem.Mol-class.html]

molvs.tautomer

This module contains tools for enumerating tautomers and determining a canonical tautomer.

	
molvs.tautomer.TAUTOMER_TRANSFORMS

	The default list of TautomerTransforms.

	
molvs.tautomer.TAUTOMER_SCORES

	The default list of TautomerScores.

	
molvs.tautomer.MAX_TAUTOMERS = 1000

	The default value for the maximum number of tautomers to enumerate, a limit to prevent combinatorial explosion.

	
class molvs.tautomer.TautomerTransform(name, smarts, bonds=(), charges=(), radicals=())

	Rules to transform one tautomer to another.

Each TautomerTransform is defined by a SMARTS pattern where the transform involves moving a hydrogen from the first
atom in the pattern to the last atom in the pattern. By default, alternating single and double bonds along the
pattern are swapped accordingly to account for the hydrogen movement. If necessary, the transform can instead define
custom resulting bond orders and also resulting atom charges.

Initialize a TautomerTransform with a name, SMARTS pattern and optional bonds and charges.

The SMARTS pattern match is applied to a Kekule form of the molecule, so use explicit single and double bonds
rather than aromatic.

Specify custom bonds as a string of -, =, #, : for single, double, triple and aromatic bonds
respectively. Specify custom charges as +, 0, - for +1, 0 and -1 charges respectively.

	Parameters

	
	name (string) – A name for this TautomerTransform.

	smarts (string) – SMARTS pattern to match for the transform.

	bonds (string) – Optional specification for the resulting bonds.

	charges (string) – Optional specification for the resulting charges on the atoms.

	
class molvs.tautomer.TautomerScore(name, smarts, score)

	A substructure defined by SMARTS and its score contribution to determine the canonical tautomer.

Initialize a TautomerScore with a name, SMARTS pattern and score.

	Parameters

	
	name – A name for this TautomerScore.

	smarts – SMARTS pattern to match a substructure.

	score – The score to assign for this substructure.

	
class molvs.tautomer.TautomerCanonicalizer(transforms=TAUTOMER_TRANSFORMS, scores=TAUTOMER_SCORES, max_tautomers=MAX_TAUTOMERS)

	
	Parameters

	
	transforms – A list of TautomerTransforms to use to enumerate tautomers.

	scores – A list of TautomerScores to use to choose the canonical tautomer.

	max_tautomers – The maximum number of tautomers to enumerate, a limit to prevent combinatorial explosion.

	
__call__(mol)

	Calling a TautomerCanonicalizer instance like a function is the same as calling its canonicalize(mol) method.

	
canonicalize(mol)

	Return a canonical tautomer by enumerating and scoring all possible tautomers.

	Parameters

	mol (Mol [http://www.rdkit.org/Python_Docs/rdkit.Chem.rdchem.Mol-class.html]) – The input molecule.

	Returns

	The canonical tautomer.

	Return type

	Mol [http://www.rdkit.org/Python_Docs/rdkit.Chem.rdchem.Mol-class.html]

	
class molvs.tautomer.TautomerEnumerator(transforms=TAUTOMER_TRANSFORMS, max_tautomers=MAX_TAUTOMERS)

	
	Parameters

	
	transforms – A list of TautomerTransforms to use to enumerate tautomers.

	max_tautomers – The maximum number of tautomers to enumerate (limit to prevent combinatorial explosion).

	
__call__(mol)

	Calling a TautomerEnumerator instance like a function is the same as calling its enumerate(mol) method.

	
enumerate(mol)

	Enumerate all possible tautomers and return them as a list.

	Parameters

	mol (Mol [http://www.rdkit.org/Python_Docs/rdkit.Chem.rdchem.Mol-class.html]) – The input molecule.

	Returns

	A list of all possible tautomers of the molecule.

	Return type

	list of Mol [http://www.rdkit.org/Python_Docs/rdkit.Chem.rdchem.Mol-class.html]

molvs.fragment

This module contains tools for dealing with molecules with more than one covalently bonded unit. The main classes are
LargestFragmentChooser, which returns the largest covalent unit in a molecule, and
FragmentRemover, which filters out fragments from a molecule using SMARTS patterns.

	
molvs.fragment.REMOVE_FRAGMENTS

	The default list of FragmentPatterns to be used by
FragmentRemover.

	
molvs.fragment.LEAVE_LAST = True

	The default value for whether to ensure at least one fragment is left after FragmentRemover is applied.

	
molvs.fragment.PREFER_ORGANIC = False

	The default value for whether LargestFragmentChooser sees organic fragments as “larger” than inorganic fragments.

	
class molvs.fragment.FragmentPattern(name, smarts)

	A fragment defined by a SMARTS pattern.

Initialize a FragmentPattern with a name and a SMARTS pattern.

	Parameters

	
	name – A name for this FragmentPattern.

	smarts – A SMARTS pattern.

	
molvs.fragment.is_organic(fragment)

	Return true if fragment contains at least one carbon atom.

	Parameters

	fragment – The fragment as an RDKit Mol object.

	
class molvs.fragment.FragmentRemover(fragments=REMOVE_FRAGMENTS, leave_last=LEAVE_LAST)

	A class for filtering out fragments using SMARTS patterns.

Initialize a FragmentRemover with an optional custom list of FragmentPattern.

Setting leave_last to True will ensure at least one fragment is left in the molecule, even if it is matched by a
FragmentPattern. Fragments are removed in the order specified in the list, so place
those you would prefer to be left towards the end of the list. If all the remaining fragments match the same
FragmentPattern, they will all be left.

	Parameters

	
	fragments – A list of FragmentPattern to remove.

	leave_last (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to ensure at least one fragment is left.

	
__call__(mol)

	Calling a FragmentRemover instance like a function is the same as calling its remove(mol) method.

	
remove(mol)

	Return the molecule with specified fragments removed.

	Parameters

	mol (Mol [http://www.rdkit.org/Python_Docs/rdkit.Chem.rdchem.Mol-class.html]) – The molecule to remove fragments from.

	Returns

	The molecule with fragments removed.

	Return type

	Mol [http://www.rdkit.org/Python_Docs/rdkit.Chem.rdchem.Mol-class.html]

	
class molvs.fragment.LargestFragmentChooser(prefer_organic=PREFER_ORGANIC)

	A class for selecting the largest covalent unit in a molecule with multiple fragments.

If prefer_organic is set to True, any organic fragment will be considered larger than any inorganic fragment. A
fragment is considered organic if it contains a carbon atom.

	Parameters

	prefer_organic (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to prioritize organic fragments above all others.

	
__call__(mol)

	Calling a LargestFragmentChooser instance like a function is the same as calling its choose(mol) method.

	
choose(mol)

	Return the largest covalent unit.

The largest fragment is determined by number of atoms (including hydrogens). Ties are broken by taking the
fragment with the higher molecular weight, and then by taking the first alphabetically by SMILES if needed.

	Parameters

	mol (Mol [http://www.rdkit.org/Python_Docs/rdkit.Chem.rdchem.Mol-class.html]) – The molecule to choose the largest fragment from.

	Returns

	The largest fragment.

	Return type

	Mol [http://www.rdkit.org/Python_Docs/rdkit.Chem.rdchem.Mol-class.html]

molvs.charge

This module implements tools for manipulating charges on molecules. In particular, Reionizer,
which competitively reionizes acids such that the strongest acids ionize first, and Uncharger,
which attempts to neutralize ionized acids and bases on a molecule.

	
molvs.charge.ACID_BASE_PAIRS

	The default list of AcidBasePairs, sorted from strongest to weakest. This list is derived from the Food and Drug
Administration Substance Registration System Standard Operating Procedure guide.

	
class molvs.charge.AcidBasePair(name, acid, base)

	An acid and its conjugate base, defined by SMARTS.

A strength-ordered list of AcidBasePairs can be used to ensure the strongest acids in a molecule ionize first.

Initialize an AcidBasePair with the following parameters:

	Parameters

	
	name (string) – A name for this AcidBasePair.

	acid (string) – SMARTS pattern for the protonated acid.

	base (string) – SMARTS pattern for the conjugate ionized base.

	
class molvs.charge.Reionizer(acid_base_pairs=ACID_BASE_PAIRS)

	A class to fix charges and reionize a molecule such that the strongest acids ionize first.

Initialize a Reionizer with the following parameter:

	Parameters

	
	acid_base_pairs – A list of AcidBasePairs to reionize, sorted from
strongest to weakest.

	charge_corrections – A list of ChargeCorrections.

	
__call__(mol)

	Calling a Reionizer instance like a function is the same as calling its reionize(mol) method.

	
reionize(mol)

	Enforce charges on certain atoms, then perform competitive reionization.

First, charge corrections are applied to ensure, for example, that free metals are correctly ionized. Then, if
a molecule with multiple acid groups is partially ionized, ensure the strongest acids ionize first.

The algorithm works as follows:

	Use SMARTS to find the strongest protonated acid and the weakest ionized acid.

	If the ionized acid is weaker than the protonated acid, swap proton and repeat.

	Parameters

	mol (Mol [http://www.rdkit.org/Python_Docs/rdkit.Chem.rdchem.Mol-class.html]) – The molecule to reionize.

	Returns

	The reionized molecule.

	Return type

	Mol [http://www.rdkit.org/Python_Docs/rdkit.Chem.rdchem.Mol-class.html]

	
class molvs.charge.Uncharger

	Class for neutralizing ionized acids and bases.

This class uncharges molecules by adding and/or removing hydrogens. For zwitterions, hydrogens are moved to
eliminate charges where possible. However, in cases where there is a positive charge that is not neutralizable, an
attempt is made to also preserve the corresponding negative charge.

The method is derived from the neutralise module in Francis Atkinson’s standardiser tool [https://github.com/flatkinson/standardiser], which is released under the Apache License v2.0.

	
__call__(mol)

	Calling an Uncharger instance like a function is the same as calling its uncharge(mol) method.

	
uncharge(mol)

	Neutralize molecule by adding/removing hydrogens. Attempts to preserve zwitterions.

	Parameters

	mol (Mol [http://www.rdkit.org/Python_Docs/rdkit.Chem.rdchem.Mol-class.html]) – The molecule to uncharge.

	Returns

	The uncharged molecule.

	Return type

	Mol [http://www.rdkit.org/Python_Docs/rdkit.Chem.rdchem.Mol-class.html]

molvs.validate

This module contains the main Validator class that can be used to perform all
Validations, as well as the validate_smiles()
convenience function.

	
molvs.validate.SIMPLE_FORMAT = '%(levelname)s: [%(validation)s] %(message)s'

	The default format for log messages.

	
molvs.validate.LONG_FORMAT = '%(asctime)s - %(levelname)s - %(validation)s - %(message)s'

	A more detailed format for log messages. Specify when initializing a Validator.

	
class molvs.validate.Validator(validations=VALIDATIONS, log_format=SIMPLE_FORMAT, level=logging.INFO, stdout=False, raw=False)

	The main class for running Validations on molecules.

Initialize a Validator with the following parameters:

	Parameters

	
	validations – A list of Validations to apply (default: VALIDATIONS).

	log_format (string) – A string format (default: SIMPLE_FORMAT).

	level – The minimum logging level to output.

	stdout (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to send log messages to standard output.

	raw (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to return raw LogRecord [https://docs.python.org/3/library/logging.html#logging.LogRecord] objects instead of formatted log strings.

	
__call__(mol)

	Calling a Validator instance like a function is the same as calling its
validate() method.

	
molvs.validate.validate_smiles(smiles)

	Return log messages for a given SMILES string using the default validations.

Note: This is a convenience function for quickly validating a single SMILES string. It is more efficient to use
the Validator class directly when working with many molecules or when custom options
are needed.

	Parameters

	smiles (string) – The SMILES for the molecule.

	Returns

	A list of log messages.

	Return type

	list of strings.

molvs.validations

This module contains all the built-in Validations.

	
molvs.validations.VALIDATIONS

	The default list of Validations used by Validator.

	
class molvs.validations.Validation(log)

	The base class that all Validation subclasses must inherit from.

	
class molvs.validations.SmartsValidation(log)

	Abstract superclass for Validations that log a message if a SMARTS
pattern matches the molecule.

Subclasses can override the following attributes:

	
level = 20

	The logging level of the message.

	
message = u'Molecule matched %(smarts)s'

	The message to log if the SMARTS pattern matches the molecule.

	
entire_fragment = False

	Whether the SMARTS pattern should match an entire covalent unit.

	
smarts

	The SMARTS pattern as a string. Subclasses must implement this.

	
class molvs.validations.IsNoneValidation(log)

	Logs an error if None is passed to the Validator.

This can happen if RDKit failed to parse an input format. If the molecule is None, no subsequent validations
will run.

	
class molvs.validations.NoAtomValidation(log)

	Logs an error if the molecule has zero atoms.

If the molecule has no atoms, no subsequent validations will run.

	
class molvs.validations.DichloroethaneValidation(log)

	Logs if 1,2-dichloroethane is present.

This is provided as an example of how to subclass SmartsValidation to check for the
presence of a substructure.

	
class molvs.validations.FragmentValidation(log)

	Logs if certain fragments are present.

Subclass and override the fragments class attribute to customize the list of
FragmentPatterns.

	
class molvs.validations.NeutralValidation(log)

	Logs if not an overall neutral system.

	
class molvs.validations.IsotopeValidation(log)

	Logs if molecule contains isotopes.

molvs.cli

This module contains a command line interface for standardization.

molvs.errors

This module contains exceptions that are raised by MolVS.

	
exception molvs.errors.MolVSError

	

	
exception molvs.errors.StandardizeError

	

	
exception molvs.errors.ValidateError

	

	
exception molvs.errors.StopValidateError

	Called by Validations to stop any further validations from being performed.

 Python Module Index

 m

 		 	

 		
 m	

 	[image: -]
 	
 molvs	

 	
 	
 molvs.charge	

 	
 	
 molvs.cli	

 	
 	
 molvs.errors	

 	
 	
 molvs.fragment	

 	
 	
 molvs.metal	

 	
 	
 molvs.normalize	

 	
 	
 molvs.standardize	

 	
 	
 molvs.tautomer	

 	
 	
 molvs.validate	

 	
 	
 molvs.validations	

Index

 _
 | A
 | C
 | D
 | E
 | F
 | I
 | L
 | M
 | N
 | P
 | R
 | S
 | T
 | U
 | V

_

 	
 	__call__() (molvs.charge.Reionizer method)

 	(molvs.charge.Uncharger method)

 	(molvs.fragment.FragmentRemover method)

 	(molvs.fragment.LargestFragmentChooser method)

 	(molvs.metal.MetalDisconnector method)

 	(molvs.normalize.Normalizer method)

 	(molvs.standardize.Standardizer method)

 	(molvs.tautomer.TautomerCanonicalizer method)

 	(molvs.tautomer.TautomerEnumerator method)

 	(molvs.validate.Validator method)

A

 	
 	ACID_BASE_PAIRS (in module molvs.charge)

 	
 	AcidBasePair (class in molvs.charge)

C

 	
 	canonicalize() (molvs.tautomer.TautomerCanonicalizer method)

 	canonicalize_tautomer (molvs.standardize.Standardizer attribute)

 	
 	canonicalize_tautomer_smiles() (in module molvs.standardize)

 	charge_parent() (molvs.standardize.Standardizer method)

 	choose() (molvs.fragment.LargestFragmentChooser method)

D

 	
 	DichloroethaneValidation (class in molvs.validations)

 	
 	disconnect() (molvs.metal.MetalDisconnector method)

 	disconnect_metals (molvs.standardize.Standardizer attribute)

E

 	
 	entire_fragment (molvs.validations.SmartsValidation attribute)

 	enumerate() (molvs.tautomer.TautomerEnumerator method)

 	
 	enumerate_tautomers (molvs.standardize.Standardizer attribute)

 	enumerate_tautomers_smiles() (in module molvs.standardize)

F

 	
 	fragment_parent() (molvs.standardize.Standardizer method)

 	FragmentPattern (class in molvs.fragment)

 	
 	FragmentRemover (class in molvs.fragment)

 	FragmentValidation (class in molvs.validations)

I

 	
 	is_organic() (in module molvs.fragment)

 	IsNoneValidation (class in molvs.validations)

 	
 	isotope_parent() (molvs.standardize.Standardizer method)

 	IsotopeValidation (class in molvs.validations)

L

 	
 	largest_fragment (molvs.standardize.Standardizer attribute)

 	LargestFragmentChooser (class in molvs.fragment)

 	
 	LEAVE_LAST (in module molvs.fragment)

 	level (molvs.validations.SmartsValidation attribute)

 	LONG_FORMAT (in module molvs.validate)

M

 	
 	MAX_RESTARTS (in module molvs.normalize)

 	MAX_TAUTOMERS (in module molvs.tautomer)

 	message (molvs.validations.SmartsValidation attribute)

 	MetalDisconnector (class in molvs.metal)

 	molvs (module)

 	molvs.charge (module)

 	molvs.cli (module)

 	molvs.errors (module)

 	
 	molvs.fragment (module)

 	molvs.metal (module)

 	molvs.normalize (module)

 	molvs.standardize (module)

 	molvs.tautomer (module)

 	molvs.validate (module)

 	molvs.validations (module)

 	MolVSError

N

 	
 	NeutralValidation (class in molvs.validations)

 	NoAtomValidation (class in molvs.validations)

 	Normalization (class in molvs.normalize)

 	
 	NORMALIZATIONS (in module molvs.normalize)

 	normalize (molvs.standardize.Standardizer attribute)

 	normalize() (molvs.normalize.Normalizer method)

 	Normalizer (class in molvs.normalize)

P

 	
 	PREFER_ORGANIC (in module molvs.fragment)

R

 	
 	reionize (molvs.standardize.Standardizer attribute)

 	reionize() (molvs.charge.Reionizer method)

 	Reionizer (class in molvs.charge)

 	
 	remove() (molvs.fragment.FragmentRemover method)

 	REMOVE_FRAGMENTS (in module molvs.fragment)

 	remove_fragments (molvs.standardize.Standardizer attribute)

S

 	
 	SIMPLE_FORMAT (in module molvs.validate)

 	smarts (molvs.validations.SmartsValidation attribute)

 	SmartsValidation (class in molvs.validations)

 	standardize() (molvs.standardize.Standardizer method)

 	standardize_smiles() (in module molvs.standardize)

 	
 	StandardizeError

 	Standardizer (class in molvs.standardize)

 	stereo_parent() (molvs.standardize.Standardizer method)

 	StopValidateError

 	super_parent() (molvs.standardize.Standardizer method)

T

 	
 	tautomer_parent() (molvs.standardize.Standardizer method)

 	TAUTOMER_SCORES (in module molvs.tautomer)

 	TAUTOMER_TRANSFORMS (in module molvs.tautomer)

 	
 	TautomerCanonicalizer (class in molvs.tautomer)

 	TautomerEnumerator (class in molvs.tautomer)

 	TautomerScore (class in molvs.tautomer)

 	TautomerTransform (class in molvs.tautomer)

U

 	
 	uncharge (molvs.standardize.Standardizer attribute)

 	
 	uncharge() (molvs.charge.Uncharger method)

 	Uncharger (class in molvs.charge)

V

 	
 	validate_smiles() (in module molvs.validate)

 	ValidateError

 	
 	Validation (class in molvs.validations)

 	VALIDATIONS (in module molvs.validations)

 	Validator (class in molvs.validate)

 _static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_images/mol1s.png

_static/ajax-loader.gif

_static/comment-close.png

nav.xhtml

 Table of Contents

 		
 MolVS: Molecule Validation and Standardization

 		
 Introduction

 		
 MolVS license

 		
 Installation

 		
 Option 2: Use conda (recommended)

 		
 Option 2: Use pip

 		
 Option 2: Download the latest release

 		
 Option 3: Clone the repository

 		
 Getting started

 		
 Validation

 		
 Validating a molecule

 		
 Available validations

 		
 Standardization

 		
 Standardizing a molecule

 		
 The standardization process

 		
 RDKit Sanitize

 		
 RDKit RemoveHs

 		
 Disconnect metals

 		
 Apply normalization rules

 		
 Reionize acids

 		
 Recalculate stereochemistry

 		
 Tautomers

 		
 Background

 		
 Tautomer enumeration

 		
 Tautomer canonicalization

 		
 Fragments

 		
 Getting the largest fragment

 		
 Filtering out fragments

 		
 Charges

 		
 Acid reionization

 		
 Neutralization

 		
 Command Line Tool

 		
 Standardization

 		
 Validation

 		
 Examples

 		
 Contributing

 		
 Feedback

 		
 Contributing

 		
 Quick guide to contributing

 		
 Tips

 		
 API documentation

 		
 molvs.standardize

 		
 molvs.normalize

 		
 molvs.metal

 		
 molvs.tautomer

 		
 molvs.fragment

 		
 molvs.charge

 		
 molvs.validate

 		
 molvs.validations

 		
 molvs.cli

 		
 molvs.errors

_images/mol1.png

